历史上隙积术是什么时候发明的?
历史上隙积术是什么时候发明的?这是很多读者都特别想知道的问题,下面历史网小编就为大家详细介绍一下,一起看看吧。
隙积术给出累綦、层坛的体积以及积罂——长方台形垛积的求和公式。沈括说:“算术求积尺之法,如刍萌、刍童、方池、冥谷、堑堵、鳖臑、圆锥、阳马之类,物形备矣。”
北宋真宗时,有一年皇宫失火,很多建筑被烧毁,修复工作需要大量土方。当时因城外取土太远,遂采用沈括的方案:
就近在大街取土,将大街挖成巨堑,然后引汴水入堑成河,使运料的船只可以沿河直抵宫门。竣工后,将废料充塞巨堑复为大街。
沈括提出的方案,一举解决了取土、运料、废料处理问题。此外,沈括还有“因粮于敌”、“高超合龙”,“引水补堤”等,也都是使用运筹学思想的例子。
沈括在《梦溪笔谈》中说:算术中求各种几何体积的 *** ,例如长方棱台、两底面为直角三角形的正柱体、三角锥体、四棱锥等都已具备,唯独没有隙积这种算法。
所谓隙积,大白话的讲就是有空隙的堆垛体,像垒起来的棋子,以及酒店里叠置的酒坛一类的东西。它们的形状虽像覆斗,4个测面也都是斜的,但由于内部有内隙之处,如果用长方棱台 *** 来计算,得出的结果往往比实际为少。
沈括所言把隙积与体积之间的关系讲得一清二楚。同样是求积,但“隙积”是内部有空隙的,像垒棋,层层堆积坛罐一样。
沈括是用什么 *** 求得这一正确公式的,《梦溪笔谈》没有详细说明。
现有多种猜测,有人认为是对不同长、宽、高的垛积进行多次实验,用归纳 *** 得出的;还有人认为可能是用“损广补狭”办法,割补几何体得出的。
沈括所创造的将级数与体积比类,从而求和的 *** ,为后人研究级数求和问题提供了一条思路。首先是南宋末年的数学家杨辉在这条思路中获得了成就,创造了垛积术公式。
垛积,即堆垛求积的意思。由于许多堆垛现象呈高阶等差数列,因此垛积术在我国古代数学中就成了专门研究高阶等差数列求和的 *** 。
杨辉在《详解九章算术算法》和《算法通变本末》中,丰富和发展了沈括的隙积术成果,还提出了新的垛积公式。
沈括、杨辉等所讨论的级数与一般等差级数不同,前后两项之差并不相等,但是逐项差数之差或者高次差相等。对这类高阶等差级数的研究,在杨辉之后一般称为“垛积术”。
元代数学家朱世杰在其所著的《四元玉鉴》一书中,把沈括、杨辉在高阶等差级数求和方面的工作向前推进了一步,并得到一系列重要的高阶等差级数求和公式,这是元代数学的又一项突出成就。他还研究了更复杂的垛积公式及其在各种问题中的实际应用。
对于一般等差数列和等比数列,我国古代很早就有了初步的研究成果。总结和归纳出这些公式并不是一件轻而易举的事情,是有相当难度的。上述沈括、杨辉、朱世杰等人的研究工作,为此作出了突出的贡献。